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The natural frequencies and the corresponding mode shapes of a uniform cantilever
beam carrying ‘‘any number of’’ elastically mounted point masses are determined by means
of the analytical-and-numerical-combined method (ANCM). One of the key points for the
present method is to replace each spring–mass system (with spring constant km,v and mass
magnitude mm,v ) by a massless ‘‘effective’’ spring with spring constant keff,v = km,v /(1− g2

v ).

Where gv is the frequency ratio defined by gv =vm,v /v̄, in which vm,v =zkm,v /mm,v is the
natural frequency of the vth spring–mass system with respect to the attached beam and v̄
is the natural frequency of the ‘‘constrained’’ beam. The present method is much better than
the conventional finite element method (FEM), since it consumes less than 30% of the CPU
time required by the conventional FEM to achieve approximately the same accuracy of the
lowest five natural frequencies of the ‘‘constrained’’ beam. It is also superior to the existing
analytical (or semi-analytical) approaches, since the latter is available only for the
eigenvalue problems with ‘‘one or two’’ elastically mounted point masses but the former
(the ANCM) easily solves the eigenvalue problems with ‘‘any number of’’ spring-mass
attachments. To confirm the reliability of the present method, all the results obtained from
the ANCM were checked by those calculated with the conventional FEM. For this purpose
two kinds of techniques were presented to derive the stiffness matrix and mass matrix of
the associated finite ‘‘constrained’’ beam element: (i) increasing one degree of freedom for
each spring–mass attachment and (ii) replacing each spring–mass attachment by a massless
effective spring.
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1. INTRODUCTION

In the introduction of reference [1], Gürgöze indicated that, in our everyday situation,
many systems may be modelled as a uniform beam or plate carrying various concentrated
elements. There is a number of works dealing with the problem of free and forced
transverse vibration of such a constrained beam or plate. The type of concentrated
elements includes a tip mass on a cantilever beam [2, 3], many point masses and/or springs
arbitrarily distributed along a beam or a plate [4–6]. For simplicity, the effects of shear
deformation and rotatory inertia were neglected in the above-mentioned literature. Many
researchers have devoted themselves to the study of a Timoshenko beam carrying various
concentrated elements [7–9] and the effects of shear deformation and rotatory inertia can
be found from these works. As shown by Jen and Magrab [10], the eigenvalue problems
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appearing in existing literature were solved with either the orthogonal expansion theory,
the Rayleigh–Ritz/Galerkin method, or the Laplace transformation method. In general,
the classical method for finding the natural frequencies of a vibrating system becomes
intractable when a beam or plate is constrained by the elastically mounted point masses
[11]. Hence, studies in this aspect appear to be fewer [10–16].

In theory, most of the approaches presented in the foregoing references may be extended
to solve the eigenvalue problems for a uniform beam or plate carrying any number of
concentrated elements. However, in practice, they are not available because of the
complexity of the mathematical expressions. For this reason, the total number of
concentrated elements (such as elastically mounted point masses, rigidly attached point
masses, translational springs, and/or rotational springs) illustrated in the examples of
references [1–16] is less than two.

To improve the last drawback of the existing approaches and to save computer time,
Wu and Lin [17] presented the analytical-and-numerical-combined method (ANCM) to
calculate the natural frequencies and mode shapes of a uniform Bernoulli beam carrying
any number of point masses. Hereafter, the same technique was successfully used to solve
the eigenvalue problems for a Timoshenko beam carrying any number of translational and
rotational springs together with any number of point masses [18] and for a rectangular
plate carrying any number of translational springs and point masses [19].

The objective of this paper is to try to employ the ANCM to do the free vibration
analysis of a uniform cantilever beam carrying any number of elastically mounted point
masses. Although the mode shapes of a vibrating system are also the important
information that engineers hope to have in addition to the natural frequencies, most of
the existing literature does not provide this information. However, reference [17–20] and
the present paper do.

It has been shown in reference [17–20] that use of the ANCM to determine natural
frequencies and mode shapes of a uniform beam or plate carrying any number of point
masses, translational springs and/or rotational springs is quite effective. To demonstrate
the fact that the effectiveness of the ANCM is not affected by the existence of any number
of spring–mass systems, a uniform cantilever beam carrying three elastically mounted point
masses, three rigidly attached point masses, and three translational springs with arbitrary
magnitudes and locations was also illustrated. To confirm the reliability of the theory
presented in this paper as well, all the numerical results obtained from the ANCM were
checked with the corresponding ones obtained from the conventional FEM.

2. EQUATION OF MOTION FOR A CANTILEVER BEAM CARRYING ANY
SPRING–MASS SYSTEMS

For the cantilever beam carrying v elastically mounted point masses mm,v (v=10 r) as
shown in Figure 1 and neglecting the effects of shear deformation and rotatory inertia,
the equation of motion of the whole vibrating system is given by [15]

EI
14y(x, t)

1x4 + m̄
12y(x, t)

1t2 = s
r

v=1

Fm,v (t)d(x− xm,v ), (1)

where E is the Young’s modulus, I is the moment of inertia of the beam’s cross-sectional
area, m̄ is the mass per unit length of the beam, y(x, t) is the transverse deflection of the
beam at position x and time t, Fm,v (t) is the interaction force between the vth sprung mass
(mm,v ) and the beam, and d( · ) is the Dirac delta function.
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Figure 1. A cantilever beam carrying v elastically mounted point masses mm,v (v=1–r).

Figure 2. A uniform cantilever beam carrying r elastically mounted point mass mm,v (v=1–r), p rigidly attached
point mass mc,l (l=1–p) and u linear springs Ky,k (k=1–u).

For the point mass mm,v mounted on the spring with spring constant km,v (v=10 r), the
equation of motion for the sprung mass is

Fm,v (t)=−mm,v d2zm,v /dt2 =−km,v [ym,v (t)− zm,v ], v=1, 2, . . . , r, (2)

or

mm,vz̈m,v + km,vzm,v = km,vym,v (t), v=1, 2, . . . , r, (3)

where ym,v (t) is the instantaneous transverse deflection of the constrained beam at the
position x= xm,v where the vth sprung mass (mm,v ) is attached, and z̈m,v (t) and zm,v (t) are
the instantaneous vertical acceleration and displacement of mm,v (at time t) respectively.
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According to the expansion theorem [21] or the mode superposition methodology [22],
the transverse deflection of the beam shown in Figure 1 may be assumed to be

y(x, t)= s
n'

i=1

Y�i (x)qi (t), (4)

where Y�i (x) represents the ith mode shape of the unconstrained beam (without any
concentrated elements attached) [17], qi (t) is the generalized co-ordinate, and n' is the total
mode number considered. Hence the value of ym,v (t) appearing in equation (3) may be
represented by

ym,v (t)= s
n'

i=1

Y�i (x)qi (t)d(x− xm,v )= s
n'

i=1

Y�i (xm,v )qi (t), (5a)

where

Y�i (xm,v )qi (t)=Y�i (x)qi (t)d(x− xm,v ). (5b)

From equations (3) and (5) one sees that the particular solution of equation (3) takes
the form

zm,v (t)= z̄m,v s
n'

i=1

qi (t), (6)

where z̄m,v represents the amplitude of zm,v (t).
When the constrained beam (Figure 1) performs harmonic free vibration, one has

qj (t)= q̄j eiv̄t, j=1, 2, . . . , n', (7)

where q̄j is the amplitude of the jth generalized co-ordinate qj (t) and v̄ is the natural
frequency of the constrained beam. To substitute equations (5)–(7) into equation (3) one
obtains

zm,v (t)=
km,v

km,v −mm,vv̄
2 s

n'

i=1

Y�i (xm,v )qi (t). (8)

From equations (2) and (8) one finds that the external exciting force on the beam due to
the existence of the elastically mounted attachment (km,v plus mm,v )

Fm,v (t)=−keff, v s
n'

i=1

Y�i (xm,v )qi (t). (9)

where

keff,v = km,v (1/[1− g2
v ]), gv =vm,v /v̄, (10a, b)

vm,v =zkm,v /mm,v . (11)

It is noted that vm,v defined by equation (11) represents the natural frequency of the
vth sprung mass mm,v with respect to the still beam, and gv represents the ratio of the
natural frequency of the spring–mass system (vm,v ) with respect to that of the constrained
beam (v̄).
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Equation (9) is an important expression, since it shows that the effect of each
spring–mass system (km,v plus mm,v ) may be replaced by a general translational spring with
effective spring constant keff,v defined by equation (10a), and this is the key point of the
present study.

Substituting equations (4) and (9) into equation (1), multiplying the resulting expression
by Y�j (x) and then integrating the whole equation over the beam length l, one obtains

g
l

0

s
n'

i=1

Y�j (x)EIY�00i (x)qi (t) dx+g
l

0

s
n'

i=1

Y�j (x)m̄Y�i (x)q̈i (t) dx

=−g
l

0

s
r

v=1

keff,vY�j (xm,v ) s
n'

i=1

Y�i (xm,v )qi (t) dx. (12)

If the mode shapes Y�i (x) (i=10 n') are normalized with respect to m̄, then application
of the orthogonal properties of the normal mode shapes will reduce equation (12) to

q̈j (t)+v2
j qj (t)=− s

r

v=1

s
n'

i=1

keff,vY�j (xm,v )Y�i (xm,v )qi . (13)

In the above equations, vj represents the natural frequency of the unconstrained beam.
The substitution of equation (7) into equation (13) will lead to the following equations

of motion for a uniform beam carrying v(=1–r) elastically mounted point masses (see
Figure 1)

v2
j q̄j + s

r

v=1

s
n'

i=1

keff,vY�j (xm,v )Y�i (xm,v )q̄i = v̄2
j q̄j . (14)

3. NATURAL FREQUENCIES AND MODE SHAPES OF THE CONSTRAINED BEAM

Equation (14) represents a set of n' simultaneous equations. For the convenience of
obtaining the solution numerically, they are rewritten in the matrix form

[A]{q̄}= v̄2[B]{q̄} (15)

where

[A]n'× n' = [%v2
%]n'× n' + [A']n'× n', [B]n'× n' = [%I%]n'× n'

[A']n'× n' = s
r

v=1

keff,v [Y�(xm,v )]n'× n', [Y�(x)]n'× n' = {Y�(x)}n'×1{Y�(x)}T
n'×1,

{Y�(x)}n'×1 = {Y� 1(x) Y� 2(x) · · · Y� n'(x)}n'×1, {q̄}n'×1 = {q̄1 q̄2 · · · q̄n'}n'×1

[%v2
%]n'× n' = 4v2

1 v2
z · · · v2

n'7n'× n'. (16)

The symbols [ ], { } and 4 7 appearing in equations (15) and (16) represent the square
matrix, column vector and diagonal matrix, respectively.
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According to equations (10a) and (10b), the effective spring constant keff,v for each
spring–mass system is a function of natural frequency (v̄) of the constrained beam, so are
the square matrices [A'] and [A] defined by equation (16). Hence equation (15) cannot be
solved with the general Jacobi method, in spite of the fact that it looks like a standard
eigenvalue equation. To avoid this trouble, equation (15) is rewritten as

([A]− v̄2[B]){q̄}= 0 or [C]{q̄}= 0, (17a, b)

where

[C]= [A]− v̄2[B]. (18)

The non-trivial solution of equation (17) requires that

=C== =[A]− v̄2[B]==0, (19)

which is the frequency equation for the constrained beam. Here the half-interval method
[23] is used to solve the eigenvalues v̄j (j=1–n') and then the corresponding eigenvectors
{q̄}(j) is obtained by substituting the values of v̄j into equation (17).

Since the coefficient determinant of equation (17), =C=, is equal to zero for each specified
eigenvalue v̄j , the corresponding eigenvector {q̄'}(j) is determined from the following
equation

[C']{q̄'}(j) =−{I}q̄k , (20)

where [C'] is a (n'−1)× (n'−1) square matrix obtained from the n'× n' square matrix
[C] by eliminating the kth row and kth column, {q̄'}(j) is a (n'−1)×1 column vector
obtained from the n'×1 column vector by eliminating the kth row, {I} is a (n'−1)×1
unit column vector defined by

{I}= {1 1 · · · 1}(n'−1)×1 (21)

and q̄k is the kth coefficient of the n'×1 column vector {q̄}(j).
Equation (20) is a general simultaneous equation, and various techniques may be used

to solve the values of {q̄'}(j). For example,

{q̄'}(j) =−[C]'−1{I}q̄k . (22)

Finally, the mode shapes of the ‘‘constrained’’ beam are determined by

ỹj (x)= s
n'

i=1

Y�i (x)q̄(j)
i = {Y�(x)}T{q̄}(j), j=1, 2, . . . , n'. (23)

It is noted that all the (n'−1) coefficients of the n'×1 column vector {q̄}(j) appearing in
equation (23) are exactly equal to those of the (n'−1)×1 column vector {q̄'}(j) determined
by equation (22), except the kth coefficient is equal to 1·0. The physical meaning of
equation (22) is that the n'×1 eigenvector {q̄}(j) is obtained by expressing all its (n'−1)
coefficients as the ratios between them and the kth coefficient q̄k . As stated above one may
set q̄k =1·0 for simplicity, otherwise one may define the value of q̄k with the following
orthogonal relationship

g
l

0

m̄q̄2
k {q̄}(j)T{q̄}(j) dx=1·0 (24)

where m̄ is the mass per unit length of the beam.
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Figure 3. A constrained beam element carrying three kinds of concentrated attachments.

4. EQUATION OF MOTION FOR A CANTILEVER BEAM CARRYING VARIOUS
CONCENTRATED ELEMENTS

In addition to the r elastically mounted point masses mm,v (v=1, 2, . . . , r) as shown in
Figure 1. Figure 2 shows a cantilever beam further carrying p rigidly attached point masses
mc,1(l=1, 2, . . . , p) and u translational linear springs with spring constants Ky,k

(k=1, 2, . . . , u). From equation (14) of this paper and equation (12) of reference [18] one
may infer that the equations of motion of such a constrained beam are given by

v2
j q̄j + s

r

v=1

s
n'

i=1

keff,vY�j (xm,v )Y�i (xm,v )q̄i + s
u

k=1

s
n'

i=1

Ky,kY�j (xK,k )Y�i (xK,k )q̄i

= v̄2
j q̄j + v̄2

j s
p

l=1

s
n'

i=1

mc,lY�j (xc,l )Y�i (xc,l )q̄i , j=1, 2, . . . , n', (25)

or

[A	 ]{q̄}= v̄2[B	 ]{q̄}, (26)

T 1

The lowest five natural frequencies v̄i (i=1–5) for a cantilever beam carrying a spring–mass
system

Location Natural frequencies (rad/s)
k*1 = m*1 = ZXXXXXXXXXXCXXXXXXXXXXV CPU

x*1 = xm,1/l
km,1

kb

mm,1

mb
Methods v̄1 v̄2 v̄3 v̄4 v̄5 time (s)

0·75 3·0 0·2 FEM 174·2097 322·1653 1415·5823 3964·9742 7767·0263 19·38
ANCM 174·2097 322·1653 1415·5823 3964·8733 7766·7438 6·15
Ref· [12] 174·2097 322·1653 1415·5823 3964·9742 7766·7438 —

1·0 100 0·5 FEM 128·6211 971·9848 2131·5152 4210·2821 7879·7358 19·93
ANCM 128·6211 973·2345 2132·8475 4213·4020 7881·0164 6·39
Ref· [1] 128·6211 — — — — —

Note: l=1·0 m; kb =EI/l3 =6·34761×104 N/m; mb = m̄l=15·3875 kg.
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Figure 4. The lowest five mode shapes ỹi (x*)(i=1–5) for the cantilever beam carrying a spring–mass system
at free end (km,l =100kb =6·34761×106 N/m, mm,l =0·5mb =7·69375 kg). Key: ——, unconstrained beam; - - - -;
constrained beam by ANCM; · · · ·, constrained beam by FEM.

where

[A	 ]n'× n' = [%v2
%]n'× n' + [A']n'× n' + [A*]n'× n', [B	 ]n'× n' = [%I%]n'× n' + [B']n'× n',

[A']n'× n' = s
r

v=1

keff,v [Y�(xm,v )]n'× n', [A*]n'× n' = s
u

k=1

Ky,k [Y�(xK,k )]n'× n',

[B']n'× n' = s
P

l=1

mc,l [Y�(xc,l )]n'× n', [Y�(x)]n'× n' = {Y�(x)}n'×1{Y�(x)}T
n'×1

{Y�(x)}n'×1 = {Y�1(x) Y�2(x) · · · Y�n'(x)}n'×1

{q̄}n'×1 = {q̄1 q̄2 · · · q̄n'}n'×1, [%v2
%]n'× n' = 4v2

1 v2
2 · · · v2

n'7n'× n'. (27)

By means of the same technique as shown in the last section, one may determine the natural
frequencies and the corresponding mode shapes of the constrained beam (Figure 2) from
equation (26).
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T 2

The lowest five natural frequencies v̄i (i=1–5) for the cantilever beam carrying three
spring–mass systems (km,1 = 3kb , mm,1 = 0·2mb ; km,2 = 4·5kb , mm,2 = 0·5mb ; km,3 = 6kb ,

mm,3 = 1·0mb )

Locations of the
spring–mass Natural frequencies (rad/s)

systems ZXXXXXXXXXXXCXXXXXXXXXXXV CPU
x*1 x*2 x*3 Methods v̄1 v̄2 v̄3 v̄4 v̄5 time (s)

0·1 0·4 0·8 FEM 102·7987 188·7388 248·6632 349·1174 1428·0327 19·18
ANCM 102·7175 188·7607 248·5116 349·1476 1427·9722 5·05

Note: l=1·0 m; kb =EI/l3 =6·34761×104 N/m; mb = m̄l=15.3875 kg.

T 3

The locations and magnitudes of the ten elastically mounted masses (cf. Figure 1)

Elastically mounted
masses number 1 2 3 4 5 6 7 8 9 10

Locations x*1 = xm,1/l 0·1 0·2 0·3 0·4 0·5 0·6 0·7 0·8 0·9 1·0

Magnitudes of spring 3·0 4·8 3·0 4·5 4·0 5·5 5·0 6·0 4·5 2·6constants k*i = ki /kb

Magnitudes of point
masses m*i =mi /mb

0·2 0·6 0·2 0·5 0·3 0·8 0·65 1·0 0·5 0·1

Note: l=1·0 m; kb =EI/l3 =6·34761×104 N/m; mb = m̄l=15·3875 kg.

T 4

The lowest five natural frequencies v̄i (i=1–5) for a cantilever beam carrying ten
spring–mass systems shown in Table 3

Natural frequencies (rad/s)
ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV CPU

Methods v̄1 v̄2 v̄3 v̄4 v̄5 time (s)

FEM 77·4452 162·8876 172·2835 181·0045 183·0103 22·08
ANCM 77·4453 162·8975 172·2979 181·0118 183·0263 8·98

T 5

The locations and magnitudes of the three kinds of concentrated elements shown in Figure 7

Locations x*i = xi /l Magnitudes of spring Magnitudes of point
ZXXXCXXXV constants k*i = ki /kb masses m*i =mi /mb

Concentrated elements x*1 x*2 x*3 k*1 k*2 k*3 m*1 m*2 m*3

Elastically mounted
point masses mm,i

0·1 0·4 0·8 3 4·5 6 0·2 0·5 1·0

Rigidly attached point
masses mc,j

0·2 0·5 0·9 — — — 0·6 0·3 0·5

Translational springs
Ky,i

0·3 0·7 1·0 3 5 2 — — —

Note: l=1·0 m; kb =EI/l3 =6·34761×104 N/m; mb = m̄l=15·3875 kg.
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Figure 5. The lowest five mode shapes ỹi (x*) (k=1–5) for the cantilever beam carrying three spring-mass
systems with spring constants: km,1 =3kb , km,2 =4·5kb , km,3 =6kb and point masses: mm,1 =0·2 mb , mm,2 =0·5 mb ,
mm,3 =1·0mb , located at x*1 = xm,1/l=0·1, x*2 = xm,2/l=0·4, x*3 = xm,3/l=0·8. Key as for Figure 4.

Figure 6. The lowest five mode shapes ỹi (x*) (i=1–5) for the cantilever beam carrying ten elastically mounted
point masses with locations and magnitudes shown in Table 3. Key as for Figure 4.
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Figure 7. A cantilever beam carrying 3 elastically mounted point masses mm,v (v=1–3) , 3 rigidly attached point
masses mc,l (l=1–3) and three translational springs Ky,k (k=1–3).

Figure 8. The lowest five mode shapes ỹi (x*) (i=1–5) for the cantilever beam carrying three elastically
mounted point masses, three rigidly attached point masses and three translational springs with locations and
magnitudes shown in Table 5.

T 6

The lowest five natural frequencies v̄i (i=1–5) for a cantilever beam carrying three kinds
of concentrated elements shown in Figure 7

Natural frequencies (rad/s)
ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV CPU

Methods v̄1 v̄2 v̄3 v̄4 v̄5 time (s)

FEM 120·1370 188·8055 248·6301 274·0269 961·9332 18·18
ANCM 120·1499 188·8130 248·6481 274·0953 962·6189 5·36
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5. ELEMENT MASS MATRIX AND STIFFNESS MATRIX FOR THE CONVENTIONAL
FINITE ELEMENT ANALYSIS

In order to confirm the reliability of the presented theory and prove the effectiveness
of the presented method, all the natural frequencies v̄j (j=1–n') obtained from the ANCM
are checked with those obtained from the conventional FEM. The element property
matrices required by the latter are derived below.

5.1.         

Figure 3 shows a constrained beam element carrying two elastically mounted point
masses (mm,A and mm,B ), two rigidly attached point masses (mc,A and mc,B ), and two linear
springs (Ky,A and Ky,B ), each located at the two nodes of the beam element (A and B).
The mass matrix [Me ] and stiffness matrix [Ke ] of such a constrained beam element are
given by

u1 u2 u3 u4 u5 u6

Me11 +mc,A Me12 Me13 Me14 = 0 0 u1

Me21 Me22 Me23 Me24 = 0 0 u2

Me31 Me32 Me33 +mc,B Me34 = 0 0 u3

[Me ] = Me41 Me42 Me43 Me44 = 0 0 u4, (28)G
G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

L

l
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0 0 0 0 = mm,A 0 u5

0 0 0 0 = 0 mm,B u6

u1 u2 u3 u4 u5 u6

Ke11+km,A+Ky,A Ke12 Ke13 Ke14 = −km,A 0 u1

Ke21 Ke22 Ke23 Ke24 = 0 0 u2

Ke31 Ke32 Ke33 + km,B +Ky,B Ke34 = 0 −km,B u3

[Ke ] = Ke41 Ke42 Ke43 Ke44 = 0 0 u4,G
G
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G

G

G

G

G

L

l

–– –– –– –– –– –– –– –– ––

−km,A 0 0 0 = km,A 0 u5

0 0 −km,B 0 = 0 km,B u6

(29)

In the last two equations the coefficients Meij and Keij (i, j=1–4) are equal to those of the
mass matrix and stiffness matrix for an unconstrained beam element respectively. One may
find their values from general textbooks [22, 24].

5.2.   –     

In section 2, it has been shown that the influence of a point mass mm,v elastically mounted
by a spring with spring constant km,v on the attached beam is the same as a linear spring
with spring constant keff,v defined by equations (10) and (11). In view of this fact, the mass
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matrix [Me ] and stiffness matrix [Ke ] for the constrained beam element shown in Figure
3 may also be evaluated by

u1 u2 u3 u4

Me11 +mc,A Me12 Me13 Me14 u1

Me21 Me22 Me23 Me24 u2G
G

G

K

k

G
G

G

L

l

[Me ] =
Me31 Me32 Me33 +mc,B Me34 u3 ,

(30)

Me41 Me42 Me43 Me44 u4

u1 u2 u3 u4

Ke11 + keff,A +Ky,A Ke12 Ke13 Ke14 u1

Ke21 Ke22 Ke23 Ke24 u2G
G

G

K

k

G
G

G

L

l

[Ke ] =
Ke31 Ke32 Ke33 + keff,B +Ky,B Ke34 u3

(31)

Ke41 Ke42 Ke43 Ke44 u4

The values of the coefficient Meij and Keij (i, j=1–4) in equations (30) and (31) are the same
as those shown in equations (28) and (29).

By means of conventional FEM, the natural frequencies v̄j and the corresponding mode
shapes ỹj (x), j=1, 2, . . . , for the constrained beam as shown in Figures 1 and 2 are
determined from the following equation of motion

[M]{ü}+[K]{u}= 0, (32)

where [M] and [K] are the overall mass matrix and overall stiffness matrix for the whole
constrained beam obtained from assembling the associated element mass matrices [Me ] and
the element stiffness matrices [Ke ] defined by equations (28)–(31) and imposing the specified
boundary conditions respectively. In equation (32), {ü} and {u} represent the node
acceleration vector and displacement vector respectively.

For a researcher who is used to solving the eigenvalue problems with the half-interval
method, two kinds of element property matrices given by equations (28)–(31) may all be
suitable for him, but those given by equations (30) and (31) may be better because the total
degrees of freedom of the whole vibrating system are not affected by the existence of any
number of spring–mass systems. However, for the researcher who is familiar with the
general Jacobi method [25], the element property matrices defined by equations (28) and
(29) should be the only choice for him because the effective spring constants keff,A and keff,B

appearing in equation (31) are a function of the unknown natural frequencies v̄j

(j=1, 2, . . . ). Since the effectiveness of the half-interval method and that of the Jacobi
method have something to do with many factors, it is difficult to say which is better of
the two kinds of element property matrices derived in this section.

6. NUMERICAL RESULTS AND DISCUSSIONS

The dimensional and physical properties for the cantilever beam studied here are:
l=1·0 m, d=0·05 m, E=2·069×1011 N/m2, r=7·8367×103 kg/m3, m̄= rA =
15·3875 kg/m, I= pd4/64=3·06796×10−7 m4, mb = m̄l=15·3875 kg, kb =EI/l3 =
6·34761×104 N/m. It is worthy of mentioning that mb represents the total mass of the
beam and kb represents one third (1/3) of the spring constant of a clamped–free beam at
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free end. Since mb and kb are the important mass parameter and stiffness parameter of the
cantilever beam, respectively, they are used as the bases of dimensionless parameters
m*i (=mi /mb ) and k*i (= ki /kb ), i=1, 2, . . . , in the following discussions.

Extensive studies show that, for the present problem, the accuracy of the lowest five
natural frequencies obtained from the ANCM by superposing five natural modes (i.e.,
n'=5) is approximately equal to that obtained from the FEM by using twenty beam
elements (i.e., ne =20). Therefore, the following comparisons are based on n'=5 for
the ANCM and ne =20 for the FEM. This criterion is the same as that of references [17]
and [18].

6.1.        

In the existing literature, only the case of a uniform beam or plate carrying one
spring–mass system can be found [1, 11–16]. For example, reference [12] determined the
natural frequencies of a cantilever beam carrying one elastically mounted point mass at
x*1 = xm,1/l=0·75, and the dimensionless spring constant and point mass are:
k*1 = km,1/kb =3·0 and m*1 =mm,1/mb =0·2. A similar problem was also studied in reference
[1], but the sprung mass was located at the free end (i.e., x*1 =1·0) and the dimensionless
magnitudes of spring constant and point mass were k*1 =100·0 and m*1 =0·5. For
convenience of comparison, the above mentioned two cases are studied here by using the
conventional FEM and the presented ANCM. The lowest five natural frequencies of the
constrained cantilever beam, v̄i (i=1–5) (rad/s), are shown in Table 1 and the
corresponding mode shapes for the case of x*1 = xm,1/l=1·0 are shown in Figure 4. From
Table 1 one sees that the values of v̄i (i=1–5) obtained either from the ANCM, reference
[12] or reference [1] are very close to those from the FEM. Besides, the lowest five mode
shapes ỹi (x*) (i=1–5) obtained from the ANCM are also very close to those from the
FEM (see Figure 4). Hence, the reliability of the theory presented and the computer
programs developed in this paper should be acceptable. It is noted that the eigenvalues
presented in references [12] and [1] are the frequency coefficients b�il and those shown in
Table 1 are the natural frequencies v̄i , the relationship between them is given by
v̄i =(b�il)2zEI/m̄l4 (i=1, 2, . . .).

6.2.        – 

For the case of the cantilever beam carrying three sprung masses located at x*1 =0·1,
x*2 =0·4 and x*3 =0·8, respectively, Table 2 shows the lowest five natural frequencies of
the constrained cantilever beam, v̄i (i=1–5), obtained from the ANCM and those from
the conventional FEM. It is evident that two sets of natural frequencies are very close to
each other. The corresponding mode shapes are shown in Figure 5 and good agreements
are also achieved. For the present case, the spring constants of the three spring-mass
systems are km,1 = 3kb , km,2 = 4·5kb and km,3 = 6kb ; and the magnitudes of the three sprung
masses are mm,1 = 0·2mb , mm,2 = 0·5mb and mm,3 = 1·0mb .

For the case of the cantilever beam carrying ten spring–mass systems, Table 3 shows
the locations and magnitudes of the ten elastically mounted point masses. From Table 4
one can see that the first five natural frequencies of the constrained cantilever beam, v̄i

(i=1–5), obtained from the ANCM are also very close to those from the conventional
FEM. The corresponding mode shapes are shown in Figure 6 and good agreements are
also achieved.

6.3.       

In addition to any number of spring–mass systems studied in the last subsection, the
cantilever beam studied in this section further carries three rigidly attached point masses
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mc,l (l=1–3) and three translational springs Ky,k (k=1–3) as shown in Figure 7. The
locations and magnitudes of the three kinds of concentrated elements are summarized in
Table 5 and the lowest five natural frequencies v̄i (i=1–5) and the corresponding mode
shapes ỹi (x*) are shown in Table 6 and Figure 8, respectively. It is evident that the results
obtained with the ANCM and those with the FEM are also in good agreement. Therefore,
the ANCM presented in this paper is available for the free vibration analysis of a uniform
beam carrying any number of various concentrated elements. The last column of Tables
1, 2, 4, and 6 shows the CPU time required by the ANCM and the FEM. It is noted that
the ANCM consumes only 1/4 to 1/3 the CPU time required by the FEM and this is one
of the reasons why the ANCM is better than the FEM. The computing machine used here
is the IBM PC 486.

In Figures 4–6 and 8 the mode shapes of the ‘‘un-constrained’’ (pure) cantilever beam
are represented by the solid lines (——), while those of the ‘‘constrained’’ beams are
represented by the dotted lines (. . . . .) if they are obtained from the FEM and by the
dashed lines (- - - -) if they are obtained from the ANCM. By comparing the three kinds
of curves one sees that the dotted lines and the associated dashed ones are almost
coincident, which means that the results of ANCM and those of FEM are in good
agreement. However, the mode shapes of the ‘‘unconstrained’’ cantilever beam are different
from those of the ‘‘constrained’’ beams significantly. This phenomenon is stated below.

From each of the Figures 4–6 and 8 one sees that the node number for the ith mode
shapes of the ‘‘un-constrained’’ cantilever beam (see the solid lines) is i−1, i.e., zero node
for the first mode shapes, one node for the second mode shapes, · · ·, and four nodes for
the fifth mode shapes. The last statement is not true for the mode shapes of the
‘‘constrained’’ beams (see the dotted lines and the dashed lines) except the first mode
shapes. For an ‘‘un-constrained’’ cantilever beam, its total mass is distributed uniformly
along the beam length. The dynamic equilibrium of such a uniform beam in free vibration
requires that the summation of the shear force at the (left) fixed end and the inertia forces
of the upward deflected parts together with those of the downward deflected parts of the
beam must be zero. Similarly, the summation of the bending moment at the (left) fixed
end and the moments induced by the above mentioned inertia forces must also vanish. Of
course, the last requirements for the dynamic equilibrium of an ‘‘un-constrained’’
cantilever beam must also be satisfied by the ‘‘constrained’’ beams carrying any number
of concentrated elements. However, since the magnitudes and locations of the concentrated
elements along the length of the ‘‘constrained’’ beams are arbitrary, the contribution of
each concentrated element on the ‘‘dynamic equilibrium’’ of the whole beam is different
from case to case. This is the reason why the mode shapes for various cases are different.

7. CONCLUSIONS

The analytical-and-numerical-combined method (ANCM) presented in this paper is
available for the determination of natural frequencies and the associated mode shapes of
a uniform beam carrying any number of various concentrated elements with reasonable
accuracy. It is better than the conventional finite element method (FEM) in saving much
computer time and also better than the existing analytical method for tackling problems
with the total number of concentrated elements being more than two.
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